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IN PURSUIT OF PHYSICALLY BASED ALGORITHMS

SWE retrieval algorithm applicable across scales from field to space that 
faithfully represents all important physics of the retrieval problem, with known 
and validated accuracy, for both active & passive microwave measurements, 
suitable for design of future satellite missions.

e.g. SodRad @ NoSREx

e.g. AMSR-E 

e.g. SnowEx
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THE RETRIEVAL CHALLENGE

➤ Radiative transfer models 
(RTMs) predict microwave 
observables given snow 
properties and are now forced 
by measurable parameters e.g. 
specific surface area (SSA) 

➤ Inverting RTMs is complex: 

• Many unknowns: depth, 
density, SSA… 

• Snow is a layered medium 

• Soil substrate properties 
significantly impact 
measurement

Radiative Transfer 
Model

Radiative  
Predictions 

(e.g.σ0)

Snow  
properties 

(SWE, SSA…)

Forward modeling

Radiative  
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(e.g.σ0)

“Inverted” 
Radiative Transfer 

Model

Snow  
properties 

(SWE, SSA…)

Retrieval Algorithms
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THE RETRIEVAL HYPOTHESIS

1. Bring in more a priori information 
2. Improve radiative transfer model precision 

3. Ensure adequate sensitivity to SWE, given SNR

Physically-based retrievals should work! 

When they don’t work:
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THE BASE-R ALGORITHM: BACKGROUND

Radiative Transfer 
Model

Radiative  
Predictions 

(e.g.σ0)

Snow  
properties 

(SWE, SSA…)

Radiative  
Observations 

(e.g. σ0)

Keep or 
reject?

➤ Bayesian Algorithm for SWE Estimation 
with radar (BASE-R) is a random walk 
algorithm for multiple-layer snowpack 

➤ Iterative evaluation gives full “retrieval 
pdf”, including uncertainty, equifinality… 

➤ Passive microwave validation by Pan et 
al. RSE, 2017. See Jinmei’s poster (#15). 

➤ BASE-R is an adaptation of this approach 
using radar backscatter (σ0).

Random 
Walk
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BASE-R IMPLEMENTATION

➤ For each snow layer, BASE-R estimates 
density, grain size autocorrelation 
length, temperature, layer thickness. 
Also soil moisture, roughness and 
temperature 

➤ First guess / prior info: global SWE 
climatology (VIC), Sturm density. 
Assume large grain size uncertainty. 

➤ Easy to objectively add better site-
specific prior information if available 
(e.g. from modeling, past snowpits, etc.) 

➤ Radiative transfer model: MEMLS3&a 
(Proksch et al., 2015) for snow + 
modified Mironov for soils

Pan et al., 2017
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BASE-R: VALIDATION EXPERIMENT WITH NOSREX

➤ Nordic Snow Radar Experiment 
(NoSREx) data from Sodankyla, 
Finland (67°22’ latitude).  

➤ Taiga snow, typical peak 
accumulation ~200 mm SWE 

➤ Continuous in situ radar 
observations with weekly 
snowpits 

➤ Four years of data: Winter 
2010-2013. Each year very 
different 

➤ 10.2, 13.3, 16.7 GHz, vv-pol 
were usedNoSREx: Lemmetyinen et al., 2016
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EXAMPLE BASE-R RESULTS: SODANKYLA, MARCH 23, 2012

Estimate & uncertainty 
summarized from 
“retrieval PDF”
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Pex ~ snow grain size correlation length
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BASE-R VALIDATION: ACROSS 69 SNOWPITS
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30 mm is the IGOS “threshold” requirement for shallow snow 

20 mm is the IGOS “objective” requirement. BASE-R still has 10 mm to go!
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BASE-R VALIDATION: PERFORMANCE VARIES ACROSS YEARS
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2012: warmest. 

2012 & 2013: high measured densities led to SWE underestimation by BASE-R
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BASE-R VALIDATION: LIMITATIONS
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BASE-R: OTHER LIMITATIONS 

➤ Predicted SWE uncertainty in this experiment is very high. 
This may be because the MEMLS3&a model is relatively low-
precision? Switch to DMRT or bicontinuous medium 
approach 

➤ NoSRex scatterometry had relatively low dynamic range, 
making observation precision very important. Also not very 
sensitive to density, and is quite sensitive to soils, and forests. 
Does not work for wet snow. Highlight need for models! 

➤ Microwave-snow relationships are complex for deep snow… 
radiance assimilation needed. Dongyue Li et al., WRR, 2017 
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WHAT ABOUT DEEP SNOW?

Radiative Transfer 
Model

Radiative  
Predictions 

(e.g. σ0)
Radiative  

Observations 
(e.g. σ0)

Update

Meteorology 
(e.g. snowfall) Snow physics model

CLPX 2003 
Rabbit Ears 
Buffalo Pass

CROCUS at 120 m (courtesy 
Marie Dumont, Meteo France) 
with ensemble forcing (courtesy 
Liz Baldo, UCLA). Assimilated 
airborne 10, 19, 37, 89 GHz. 

Snow  
properties 

(SWE, SSA…)

Results courtesy 
Rhae Sung Kim. See 
poster #10.
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RADIANCE ASSIMILATION WORKS FOR DEEP COLORADO SNOW

Particle filter retrieval for deep 
mountain snow. Depth RMSE = 13 cm

r2=0.85

Results courtesy Rhae Sung Kim. 
See poster #10.

CROCUS simulations for two 
particles in a single retrieval

Excursion ~200 cm indicates a 
melt-refreeze crust possible prior 
to overflight
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SNOWEX & BASE-R PERSPECTIVES 

➤ Looking forward to microwave 
working group. Integration with U of 
M bi-continuous model 

➤ Run on SnowEx SAR, and collaborator 
datasets (Trail Vally Creek et al.) 

➤ Test with in situ scatterometer from 
Waterloo (A. Thompson & R. Kelly & 
photo at right; poster #22) 

➤ Grand Mesa snow is deep! Run BASE-
R using CROCUS prior estimate of 
stratigraphy: models will be key 

➤ Comparing retrievals to SSA and 
micropen profiles is crucial! See C. 
Derksen’s talk (this session). 

53Wa 25E
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Lead: Simon Yueh, JPL
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QUESTIONS?
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ADDITIONAL SLIDES
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BASE-R VALIDATION: OBSERVATION & MODEL ERROR

➤ Lowering assumed 
observation+model 
error too far leads to 
unrealistic results 

➤ We suspect 
MEMLS3&a precision 
is around 0.5 dB 

➤ Searching for a  more 
precise model, 
including one that 
handles co-pol
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SATURATION (1/4)

➤ Sometimes, what is implied by “saturation” is that after a 
given depth, all snow of the same depth has the same 
radiometric signature 

➤ In that way of thinking, retrieval algorithms cannot function 
past a saturation depth.  

➤ However, it is simply not true that deep snow all has the same 
radiometric signature. 

➤ Changes in depth and grain size lead to changes in microwave 
radiance regardless of depth
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SATURATION (2/4): DATA FROM SODANKYLA
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REVISITING SATURATION (3/4)

One layer models “saturate”; 
they converge to a steady state 
value as SWE increases

Multi-layer models do not: 
many studies have noted this. 
The retrieval is complicated 
for deep snow, of course!
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REVISITING SATURATION (4/4)

➤ How can SWE be retrieved for deep snow in Li et al. (2017)? 

1. Due to stratigraphy and vertical grain size variability, saturation 
only truly applies to a vertically-uniform snowpack. Vertical 
uniformity rare, especially for deep snow 

2. As snow gets deeper, snow-microwave relationships become 
more complex, however, meaning you need more prior 
information (i.e. radiance assimilation) for deep snow 

3. Li et al. model precipitation bias as a constant*: no storm-to-
storm error variability. Thus information early in the year helps 
correct SWE late in the year. 

4. Sub-footprint SWE variability at satellite scale: some parts of the 
footprint are deeper than others
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EQUIFINALITY & RETRIEVAL
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BASE-PM: EFFECT OF STRATIGRAPHY

1-layer RMSE excludes two Churchill outliers. 
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Pan et al., 2017
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